Sunday, August 9, 2020

Cara Konversi antar sistem bilangan | bag.5

<;Cara mengkonversi antar sistem bilangan komputer Cara Konversi antar sistem bilangan komputer desimal,biner,oktal dan hexadesimal adalah praktik rangkuman, dimana anda telah melakukan praktik konversi berbagai sistem bilangan seperti desimal,biner, oktal dan heksadesimal. Perkembangan dunia Jaringan komputer dan digital sudah sangat maju.

Namun mempelajari sistem bilangan komputer sebagai landasan untuk pengembangan teori dan praktik masih sangat diperlukan.

Selain itu, dengan mempelajari cara konversi antar sistem bilangan anda mendapat ilmu dasar-dasar teknik elektronika digital yang sekarang menjadi trend industri 4.0.

Industri 4.0 adalah industri dimana software dan hardware menjalin kolaborasi,mendukung sistem otomasi dan kendali jarak jauh.

Sebelum anda belajar bagaimana mengkonversi sistem bilangan, baca dulu materi sistem bilangan komputer.

Cara Konversi antar sistem bilangan


Perhitungan konversi melibat banyak sistem bilangan, umumnya manusia menguasai sistem bilangan desimal saja.Bagaimana dengan sistem bilangan lainya? Hmm, mari kita pelajari dibawah ini...

Sistem bilangan Desimal

Sistem bilangan yang menggunakan radix atau atau basis 10 disebut Desimal. Kata desimal berasal dari akar kata Latin decem (sepuluh).


Konvensi penulisan yang umum adalah 45610

Sistem Bilangan desimal adalah sistem yang paling sering kita gunakan dalam kehidupan sehari-hari.

Sebagai contoh sistem bilangan desimal dipakai untuk membilang nilai mata uang, angka, jarak, berat dan lain-lain.


Jawabnya adalah karena position value ( nilai tempat) dari basis bilangan desimal.

Contoh:
Angka 4521 akan terdiri dari 4 ribuan, 5 ratusan, 2 puluhan dan 1 satuan.


Perhatikan gambar dibawah untuk penjelasan lebih detail...

<;Konversi antar sistem bilangan komputer
Gambar 1. Menghitung nilai (value) sebuah angka dengan cara mengalikan dengan basis(radix)nya. Misal sistem bilangan desimal menggunakan basis 10, maka jika dipangkatkan mulai dari 0, maka kita sudah mendapatkan sebuah nilai berdasarkan position value. Dengan demikian kita mengetahui bahwa besarnya nilai dari angka 4521 dapat diketahui dari position value (nilai tempat) berdasarkan basis angkanya

Dengan menggunakan konsep yang sama, dimana nilai sebuah bilangan dilihat dari position value dan radixnya, maka nilai dari sistem bilangan lainnya dapat ditentukan.

Cara Konversi Desimal ke biner

Bilangan biner terdiri dari 2 simbol angka, yaitu 0,1. Umumnya, bilangan biner ditulis dalam 1 byte yang terdiri dari 8 bit biner. Pada ilmu jaringan komputer, 8 bit ini sama dengan 1 oktet.

8 bit bisa berisi 00000000 semua atau 11111111 semua atau kombinasi 10101010, bebas selama itu terdiri dari 8 bit.

Untuk mengkonversi sistem bilangan desimal ke biner,digunakan tanda Radix (basis), agar kalian tahu sedang menggunakan sistem bilangan apa saat ini.

Contoh :


Jawab:

Ada 2 cara untuk menyelesaikan masalah ini�?

Cara ke 1 adalah dengan membagi habis angka desimal dengan 2
Yang anda perlu catat adalah sisa hasil baginya saja.

Prosesnya gini�?

Cara menuliskannya sebagai berikut 11000000. Jadi 192(10) = 11000000(2).

Perhatikan gambar dibawah untuk lebih jelasnya...

<;Konversi sistem bilangan desimal ke biner
Gambar 2. Proses konversi desimal ke biner dengan cara membagi bilangan desimal dengan 2, dimana 2 adalah basis dari bilangan biner. Langkahnya cukup bagi habis kemudian catat sisanya. Jika tidak ada sisa, ditulis 0. Jika bersisa ditulis 1

Cara ke 2 adalah dengan menggunakan tabel bantu angka ajaib 128,64,32,16,8,4,2,dan 1.
Cukup kurangi angka desimal yang dicari dengan angka paling dekat pada deret angka ajaib.

Prosesnya gini�?

Siapkan tabel ajaibnya seperti ini..


Pertanyaannya adalah konversilah 192(10) ke biner, maka�?


Perhatikan, angka dalam tabel ajaib 128 kita pakai sebagai pengurang. Karena terpakai sebagai pengurang, berarti kita beri 1 bit.

Lanjut...


Kemudian 64-64, disini angka berikutnya sebagai pengurang adalah 64, maka kita beri 1 bit.

Hasil akhirnyaa seperti ini�?

128+64+32+16+8+4+2+1
1+1+0+0+0+0+0+0


Hasil konversi didapat 192(10) = 11000000(2)

Cukup kreatif caranya 'kan?

Perhatikan gambar dibawah untuk kejelasan informasinya...

<;Konversi sistem bilangan desimal ke biner
Gambar 3. Pada konversi desimal ke biner cara ke 2 ini, kita menggunakan tabel bantu. Caranya adalah 192 dikurang angka mendekati 192 adalah 128. Pada kolom 128 kita beri bit 1. Hasil pengurangan 192-128=64, nah 64 ada ditabel tersebut kita beri bit 1. Sekarang 64-64 = 0, artinya sudah tidak bisa dikurang lagi, sehingga 192 Desimal = 11000000 biner

Cara konversi desimal ke oktal

Contoh:

Diketahui bilangan desimal 192(10). Konversilah ke sistem Oktal!

Jawab:

Caranya adalah dengan membagi habis angka desimal dengan 8. Yang anda perlu catat adalah sisa hasil baginya saja.

Prosesnya sederhana, hanya membagi habis angka desimalnya dengan 8�?


Hasil konversi dapat dilihat 192(10) = 300(8)

Lihat gambar berikut ini,

<;Konversi sistem bilangan desimal ke oktal
Gambar 4. Proses konversi desimal ke oktal dengan cara membagi bilangan desimal dengan 8, dimana 8 adalah basis dari bilangan oktal. Langkahnya cukup bagi habis kemudian catat sisanya.

Cara konversi desimal ke hexadesimal

Contoh:

Diketahui bilangan desimal 192(10). Konversilah ke sistem hexadesimal!

Jawab:

Caranya adalah dengan membagi habis angka desimal dengan 16. Yang anda perlu catat adalah sisa hasil baginya saja.

Prosesnya gini�?


Sederhana sebenarnya, 12 dibagi 16 secara harfiah pasti hasilnya 0,75.

Kita tulis hasilnya 0 sisanya ya tetap 12. Lalu 12 = C kalo di hexadesimalin.

Gimana, simple ‘kan?

Hasil konversi dapat dilihat 192(10) = C0(16)

lihat gambar deh...

<;Konversi sistem bilangan desimal ke hexadesimal
Gambar 5. Proses konversi desimal ke oktal dengan cara membagi bilangan desimal dengan 16, dimana 16 adalah basis dari bilangan oktal. Langkahnya cukup bagi habis kemudian catat sisanya.

Contoh lagi nih,

Diketahui bilangan desimal 270(10). Konversilah ke sistem Hexadesimal !

jawab:


Hasil konversi dapat dilihat 270(10) = 10E(16)

Sistem bilangan Biner

Sistem bilangan yang menggunakan radix atau atau basis 2 disebut Biner. Kata Biner berasal dari akar kata Latin bin(dua).

Bilangan biner terdiri 2 angka b={0 dan 1}.

Cara Konversi biner ke Desimal

Cara konversi biner ke desimal sesuai buku panduan
Contoh:

Diketahui bilangan 00001010(2). Konversilah ke sistem bilangan desimal, atau menjadi basis 10.

Jawab:

Untuk mempermudah konversi dengan cepat, kalian cukup ingat urutan angka ini saja, 128,64,32,16,8,4,2,1. Jika ada soal konversilah 10000000 ke desimal, pasti jawabanya 128. Hayoo, kok bisa gitu....hehehe

Cara Konversi sistem bilangan biner ke Desimal dengan bantuan tabel
Bilangan biner terdiri dari dua angka, yaitu 0 dan 1.

Untuk mengkonversi sistem bilangan biner yang berbasis 2 ke desimal yang berbasis 10, gunakan tabel bantu dibawah ini (lihat gambar dibawah).

Untuk membedakan sistem bilangan, digunakan tanda Radix (basis).

Contoh:

Diketahui bilangan biner 10011011(2). Konversilah ke sistem bilangan desimal!

Jawab:

<;Cara Konversi Desimal ke biner
Gambar 6. Rumus dasar konversi biner 8 bit ke desimal

Yang perlu anda ingat adalah hasil perpangkatan 2 yang dimulai dari pangkat 0 hingga 7 dimana angka desimalnya adalah 128,64,32,16,8,4,2,1. Cukup dibenamkan angka ajaib tersebut ke dalam otak kamu ya...

<;tabel bantu Konversi biner ke desimal
Gambar 7. Proses konversi Biner ke desimal cukup simple, kalian taruh saja bilangan biner 10011011 tepat dibawah kolom tabel bantu. Nah, sekarang yang dihitung nilainya adalah data yang ber bit 1. Kemudian lakukan penambahan seperti biasa, dapat deh hasilnya 10011011 biner = 155 desimal

Proses konversi Biner ke desimal cukup simple, kalian taruh saja bilangan biner 10011011 tepat dibawah kolom tabel nilai desimal.

gini caranya...

1+0+0+1+1+0+1+1
128+0+0+16+8+0+2+1 = 155 desimal.

Nah, sekarang yang dihitung nilainya adalah data yang ber bit 1. Kemudian lakukan penambahan seperti biasa, dapat deh hasilnya 10011011 biner = 155 desimal


Cara Konversi sistem bilangan biner ke Desimal dengan penyederhanaan
Karena kita saat ini membahas konversi sistem bilangan biner ke desimal dimana bit biner yang kita gunakan adalah 8 bit. 8 bit itu terdiri dari bit 1 sebanyak 8x, jika ditulis 11111111. Hasil konversi 11111111(2) = 255(10)

Nah, yang perlu anda ingat nilai desimal terbesar dari 8 bit biner adalah 255 desimal

Lalu untuk mengkonversi sistem bilangan biner ke desimal dengan cara penyederhanaan adalah dengan menggunakan bit 0 sebagai pengurang.

Perhatikan contoh:

Diketahui bilangan biner 10111111(2). Konversilah ke sistem desimal!

Jawab:

<;Proses konversi Biner ke desimal dengan hanya melihat posisi bit 0
Gambar 8. Proses konversi Biner ke desimal dengan hanya melihat posisi bit 0. Nilai bit 0 dipakai sebagai pengurang. Diketahui nilai dasar 8 bit adalah 255, maka cukup 255-64 maka hasilnya adalah 191 desimal.

Proses konversi Biner ke desimal gampang kok...

Caranya dengan hanya melihat bit 0. Nilai bit 0 ini nanti akan dipakai sebagai pengurang. Jika diketahui nilai 8 bit adalah 255 desimal, maka persoalan konversi 10111111 dapat terjawab..

Gini caranya...

Lihat biner ini ---> 10111111. Posisi bit 0 ke dalam tabel bantu desimal bernilai 64. Maka nilai 64 jadikan pengurang.

Cukup tulis 255-64 maka hasilnya adalah 191 desimal



Cara Konversi biner ke Oktal

Untuk mengkonversi biner ke oktal, sebelumnya harus dipahami dulu bahwa oktal menggunakan basis 8 angka sebagai dasar perhitungannya dimana ada 8 simbol angka 0,1,2,3,4,5,6,7.

Konversi biner (basis 2) ke oktal (basis 8) menggunakan sedikit analisa. Coba perhatikan deret angka 128,64,32,16,8,4,2,1. Yup ternyata ada angka 8 disana yang secara tepat = 23. Bukan kebetulan!

Jadi kombinasi biner ke oktal bit minimum dimulai 000 dan maksimum 111 = 7. Mulai keliatan 'kan relasinya, 0,1,2,3,4,5,6,7 = oktal.


Contoh : diketahui bilangan 10101010(2). Tanda radix/basis 2 berarti ini adalah sistem bilangan biner. Konversilah ke sistem bilangan oktal, atau menjadi basis 8.

Jawab:


Cara Konversi biner ke hexadesimal

Untuk mengkonversi biner ke hexadesimal, sebelumnya harus dipahami dulu bahwa hexadesimal menggunakan basis 16 angka sebagai dasar perhitungannya dimana ada 16 simbol angka 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F, dimana A=10 B=11 C=12 D=13 E=14 dan F=15

Konversi biner (basis 2) ke hexadesimal (basis 16) menggunakan sedikit analisa. Coba perhatikan deret angka 128,64,32,16,8,4,2,1. Yup ternyata ada angka 16 disana yang secara tepat = 24. Bukan kebetulan!

Jadi kombinasi biner ke hexadesimal bit minimum dimulai 0000 dan maksimum 1111 = 15 atau F. Mulai keliatan 'kan relasinya, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F = Hexadesimal.


Contoh : diketahui bilangan 11111000(2). Tanda radix/basis 2 berarti ini adalah sistem bilangan biner. Konversilah ke sistem bilangan hexadesimal, atau menjadi basis 16.

Jawab:


Sistem Bilangan Oktal

Bilangan oktal terdiri dari 8 angka, yaitu 0,1,2,3,4,5,6 dan 7. Ingat, berarti bilangan Oktal mentok sampai 7.

Untuk mengkonversi sistem bilangan oktal yang berbasis 8 ke desimal yang berbasis 10,gunakan tabel bantu dibawah ini.Untuk membedakan sistem bilangan, digunakan tanda Radix (basis).

Cara Konversi oktal ke desimal


Diketahui bilangan oktal 77(8). Konversilah ke sistem bilangan desimal!

Jawab:

<;Mengkonversi oktal ke desimal
Gambar 9. Rumus dasar konversi oktal ke desimal adalah dengan cara mengalikan angka oktal dengan nilai posisi basisnya.

Well, ginih prosesnya...

Seperti biasa, jika kalian memahami position value dari basis (radix) sebuah sistem bilangan, maka untuk menyelesaikan masalah ini akan sangat mudah.

Pertama,

Anda dapat membuat tabel bantu atau langsung di lakukan konversi tidak masalah, karena pada dasarnya anda hanya melakukan perkalian angka dengan radixnya.

Ingat, nilai terkecil adalah basis paling kanan (jika dilihat dari depan kita) dipangkat dengan 0..

Kalo ditulis berdasarkan kaidah urutan gini...80,81,82,83 dan seterusnya..

Tapi...

Karena kita bicara nilai sebuah angka, penulisannya harus seperti ini..dan seterusnya 83,82,81,80

Sekarang kita desimalkan nilai nilai basis tersebut menjadi, 512, 64, 8 , 1 (lihat gambar 9)

Nah, sekarang kita tinggal melakukan perkalian sistem bilangan oktal dengan position valuenya. Pada contoh diatas, kita akan mencari nilai 77(8).

Kita bikin tabel aja seperti gambar 9...

lalu angka 77 posisikan pada mulai dari kiri...

8 1
7 7

Sekarang, caranya tinggal (7x8) + (7x1) = 56 + 7 = 63 desimal.

Cara Konversi oktal ke biner

Untuk mengkonversi oktal ke biner, saya menggunakan tabel bantu 4,2,1 jika di jumlah = 7 = atau bit 111 semua. Kita langsung ke contoh soal aja ya..

Contoh :

Diketahui bilangan 74(8). Konversilah ke sistem bilangan biner, atau menjadi basis 2.

Jawab:
74(8) = ................(2)

74(8) = kita bagi jadi 7 dan 4
7 = 111 --> ingat oktal identik dengan 3 bit 4+2+1 = 7
4 = 100 --> 4+0+0 = 4

74(8) = 111 100
74(8) = 00111100(2) jika dibuat 8 bit

Cara konversi oktal ke hexadesimal

Hexadesimal terdiri dari 16 simbol dimulai dari 1,2,3,4,5,6,7,8,9 A,B,C,D,E dan F
Secara tepat basis 16 itu = 24 alias 4 bit. Gunakan tabel bantu 8421 yang identik dengan 1111.

Caranya sedikit tricky, tapi cerdas. Supaya jelas, saya beri contoh soal saja...

Contoh:

Diketahui bilangan 172(8). Konversilah ke sistem bilangan hexadesimal.

Jawab:



Sistem bilangan hexadesimal

Bilangan Hexadesimal terdiri dari 16 angka, yaitu 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E dan F. Hlooo, kok ada A B C D E F-nya?

Benar, A = 10, B = 11, C=12, D=13, E=14 dan F=15

Untuk mengkonversi sistem bilangan Hexadesimal yang berbasis 16 ke desimal yang berbasis 10, dapat langsung mengalikan dengan angka hexanya dengan position value atau menggunakan tabel bantu juga boleh.

Untuk membedakan sistem bilangan, digunakan tanda Radix (basis).

Cara Konversi hexadesimal ke desimal

Contoh:

Diketahui bilangan Hexadesimal 15A(16). Konversilah ke sistem desimal!

Jawab:

<;Cara Konversi Desimal ke Hexadesimal atau Hexadesimal ke Desimal
Gambar 10. Rumus dasar konversi hexadesimal ke desimal adalah dengan cara mengalikan angka hexadesimal dengan nilai posisi basisnya.

Pada gambar 10, anda diperlihatkan cara konversi menggunakan perkalian berdasarkan position value radix 16.

Tapi sebelum itu saya mengingatkan bahwa A = 10 ( biar gak ada pertanyaan aja A kok 10, lihat penjelasan diatas)

15A(16) = (1x162) + (5x161) + (Ax160)
15A(16) = (1x256) + (5x16) + (10x1)
15A(16) = (256) + (80) + (10)
15A(16) = 346 desimal

Sekarang, anda bisa membuat tabel ajaib juga untuk menyelesaikan permasalahan konversi hexadesimal ke desimal.

Terserah, mana yang paling mudah buat anda...

Cara konversi hexadesimal ke biner

Untuk mengkonversi hexadesimal ke biner, saya menggunakan angka bantu 8,4,2,1 jika di jumlah = 15 = atau bit 1111 semua. Kita langsung ke contoh soal aja ya..

Contoh : diketahui bilangan 7B(16). Konversilah ke sistem bilangan biner, atau menjadi basis 2.

Jawab:

Cara konversi hexadesimal ke oktal

Kita langsung ke contoh soal aja ya..

Contoh : diketahui bilangan 7B(16). Konversilah ke sistem bilangan oktal, atau menjadi basis 8.

Jawab:


Tabel Konversi antar sistem bilangan dari 1 sampai 100

Dibawah ini adalah tabel konversi antar sistem bilangan dari 0 sampai 100 yang dapat anda pakai sebagai bahan belajar sistem bilangan

DesimalBinerHexaOktal
1111
21022
31133
410044
510155
611066
711177
81000810
91001911
101010A12
111011B13
121100C14
131101D15
141110E16
151111F17
16100001020
17100011121
18100101222
19100111323
20101001424
21101011525
22101101626
23101111727
24110001830
25110011931
26110101A32
27110111B33
28111001C34
29111011D35
30111101E36
31111111F37
321000002040
331000012141
341000102242
351000112343
361001002444
371001012545
381001102646
391001112747
401010002850
411010012951
421010102A52
431010112B53
441011002C54
451011012D55
461011102E56
471011112F57
481100003060
491100013161
501100103262
511100113363
521101003464
531101013565
541101103666
551101113767
561110003870
571110013971
581110103A72
591110113B73
601111003C74
611111013D75
621111103E76
631111113F77
64100000040100
65100000141101
66100001042102
67100001143103
68100010044104
69100010145105
70100011046106
71100011147107
72100100048110
73100100149111
7410010104A112
7510010114B113
7610011004C114
7710011014D115
7810011104E116
7910011114F117
80101000050120
81101000151121
82101001052122
83101001153123
84101010054124
85101010155125
86101011056126
87101011157127
88101100058130
89101100159131
9010110105A132
9110110115B133
9210111005C134
9310111015D135
9410111105E136
9510111115F137
96110000060140
97110000161141
98110001062142
99110001163143
100110010064144

No comments:

Post a Comment